Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space
نویسندگان
چکیده
Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.
منابع مشابه
[Growth regulation mechanisms in higher plants under microgravity conditions].
During Space Shuttle STS-95 mission, we cultivated seedlings of rice (Oryza sativa L. cv. Koshihikari and cv. Tan-ginbozu) and Arabidopsis (Arabidopsis thaliana L. cv. Columbia and cv. etr1-1) for 68.5, 91.5, and 136 hr on board, and then analyzed changes in the nature of their cell walls, growth, and morphogenesis under microgravity conditions. In space, elongation growth of both rice coleopti...
متن کاملUltrastructure of potato tubers formed in microgravity under controlled environmental conditions.
Previous spaceflight reports attribute changes in plant ultrastructure to microgravity, but it was thought that the changes might result from growth in uncontrolled environments during spaceflight. To test this possibility, potato explants were examined (a leaf, axillary bud, and small stem segment) grown in the ASTROCULTURETM plant growth unit, which provided a controlled environment. During t...
متن کاملنقش سیلیکون در کاهش تنش کمبود و سمیت آهن در کشت هیدروپونیک گیاه برنج (Oryza sativa L.)
Silicon (Si) nutrition may alleviate biotic and abiotic stresses including heavy metal deficiency and toxicity in plants. Iron deficiency and toxicity are important limiting factors in growth of rice. In the present study, role of Si nutrition on alleviation of iron deficiency and toxicity was investigated in rice plants. Plants were cultivated in greenhouse in hydroponics, using Yoshida soluti...
متن کاملCD44 expression changes and increased apoptosis in MCF-7 cell line of breast cancer in simulated microgravity condition
Introduction: Studies have shown that simulated microgravity (SMG) affects tumor cell proliferation and metastasis. However, the underlying mechanism and its molecular basis are still not well known. In recent years, due to the role of CD44 in breast cancer and its high expression in invasive basal tumors, it has been the subject of extensive research. There is a conflicting data on the role of...
متن کاملDifferential Effects of Nitrogen Forms on Cell Wall Phosphorus Remobilization Are Mediated by Nitric Oxide, Pectin Content, and Phosphate Transporter Expression1[OPEN]
NH4 + is a major source of inorganic nitrogen for rice (Oryza sativa), and NH4 + is known to stimulate the uptake of phosphorus (P). However, it is unclear whether NH4 + can also stimulate P remobilization when rice is grown under P-deficient conditions. In this study, we use the two rice cultivars ‘Nipponbare’ and ‘Kasalath’ that differ in their cell wall P reutilization, to demonstrate that N...
متن کامل